Mini-Workshop on Kaon Experiments and Detectors, 5-7 Nov 2004, Mikata

Search for Pentaquark in Low Energy Kaon Beam

Norihito Muramatsu RCNP, Osaka University

Pentaquark Search at E949

Resonance formation reaction

$$K^+n$$
→ K_S^0p → $\pi^+\pi^-p$
-P(K^+)=440 MeV/c
-neutron in Sci. Tgt.

π⁺π⁻p detection

at UTC (and others?)_K

$$M(\pi^{+}\pi^{-})=M(K_{S}^{0})$$

$$\Rightarrow M(K_{S}^{0}p)=M(\Theta^{+})$$

• $\pi^+\pi^-$ detection at UTC

$$M(\pi^{+}\pi^{-})=M(K_{S}^{0})$$

 $MM(K^{+},\pi^{+}\pi^{-})=M(p)$

 \Rightarrow M(K+n) with Fermi-correction

 $\Delta v/v = \Delta t/t$, v = L/t, $\Delta t = 200$ psec $\Rightarrow L = 4$ m is equivalent to $\sigma = 8.4$ MeV K/π separation : ~6 nsec

Toy MC simulation

- 440 MeV/c K⁺ beam in z-direction
- Fermi motion of neutron inside carbon by harmonic oscillator model.
- Breit-Wigner resonance
 M=1540 MeV and Γ=10 MeV
- Flat generation of K_S⁰ and proton at CMS
- Flat generation of π^+ and π^- at K_S^0 rest frame
- Lorentz transformation to Lab frame

Kinematics in $\pi^+\pi^-$ detection mode

Backward production at CMS (26 mb for Γ =1 MeV) vs.

Experimental Considerations

- CMS energy resolution for mass measurement
 M(K⁺ and rest neutron) with Fermi corr. true E_{CMS}
 ⇒ Validity check of Fermi corr.
- See initial works at http://www.phy.bnl.gov/e949/ analysis/pentaquark

Geometrical Acceptance Measurement

• In case that $\pi^+\pi^-$ or $\pi^+\pi^-$ p are detected at UTC

```
two pions (K_S^0) two pions + proton z= 0 cm 0.1235\pm0.0023 0.0006\pm0.0002 -10 cm 0.1242\pm0.0023 0.0182\pm0.0009 -20 cm 0.1056\pm0.0021 0.0602\pm0.0017
```

In case that P(K⁺) resolution = 8.4 MeV, UTC resolution
 = 1.3% and RMS of beam dist. = 4 cm

```
two pions (K_S^0) two pions + proton z= 0 cm 0.1282±0.0023 0.0003±0.0001 -10 cm 0.1192±0.0023 0.0180±0.0009 -20 cm 0.1062±0.0021 0.0616±0.0017
```

⇒ No big change in the realistic case

Acceptances with proton detection

In case proton is detected at inner two layers of UTC.

```
|z-position at r=30 cm |< 25 cm is assumed.
```

P(K⁺) resolution, UTC resolution and beam dist. are included.

two pions + proton

```
z = 0 \text{ cm} 0.0045±0.0005
```

In case that proton Is detected at sci. target.

```
\theta_{\text{proton}} < 0.3 rad by assuming R<sub>proton</sub> ~ 20 cm
```

two pions + proton

$$z= 0 cm$$
 0.0436±0.0004 How about resolution?

-10 cm 0.0177±0.0009

-20 cm 0.0013±0.0003

Range counter instead of End-Cap?

Fermi Correction

Analytical Formula

$$\left[M^{C}(K^{+}n) \right] = \left[M(K^{+}n) \right] - \frac{\left| P_{K^{+}} \right|}{\left| P_{K^{+}} - P_{K_{S}^{0}} \right|} \times \left[MM(K^{+}, \pi^{+}\pi^{-}) \right] - \left[M_{p} \right]$$

But some approximations...

$$E_f = M_n + P_f^2/(2M_n)$$
 and neglect P_f^2 terms $\cos\theta(K^+)/\cos\theta(K^+ - K_S^0) = 1$

CMS energy resolution

No beam & detector resolutions

Changing beam res. with UTC res. 1.3%

```
8.4 MeV 11.61±0.12 8.74±0.12 MeV
```

20 MeV 12.91±0.11 10.94±0.21 MeV

30 MeV 14.26±0.11 12.31±0.29 MeV

40 MeV 15.77±0.11 14.28±0.45 MeV

50 MeV 17.62±0.12 17.11±0.78 MeV

Changing UTC res. with beam res. 8.4 MeV

```
1.3% 11.61±0.12 8.74±0.12 5.07±0.17 MeV
```

3.0% 13.00±0.12 10.31±0.18 10.79±0.46 MeV

4.5% 14.91±0.13 12.45±0.31 15.65±0.83 MeV

6.0% 17.29±0.15 14.80±0.51 22.88±1.35 MeV

10 MeV resolution is retained in the realistic case

•π⁺π⁻p detection at UTC

Beam Momentum Setting

• P(K⁺)=442 MeV/c for M(Θ⁺)=1.540 GeV but

 $P(K^+)=417$ MeV/c for $M(\Theta^+)=1.530$ GeV (world ave.)

True CMS energy is spread by ~50 MeV

because of neutron Fermi motion

Beam Momentum should be adjusted at ~20 points in each 10-20 MeV/c

Summary

- Existence of pentaquark can be confirmed by E949 detector. (There are many null results in high energy experiments.)
- Two pion detection at UTC seems promising.
 (Geometrical acceptance ~10%)
- Two pion + proton detection at UTC may be analyzed for z=-20 cm.
- 10 MeV E_{CMS} resolution can be achieved in two pion detection mode with Fermi correction. (Nakano suggested MM(K⁺,π⁺π⁻)>0.97 reduced E_{CMS} res. to 6 MeV with a cost of 80% acc. loss and slight peak shift.) Note that energy resolution with two pions + proton detection is 5 MeV.
- Beam momentum setting: ~20 points in each 10-20 MeV/c.